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Abstract
A class of pseudo-Hermitian quantum system with an explicit form of the
positive-definite metric in the Hilbert space is presented. The general method
involves a realization of the basic canonical commutation relations defining
the quantum system in terms of operators that are Hermitian with respect to
a pre-determined positive-definite metric in the Hilbert space. Appropriate
combinations of these operators result in a large number of pseudo-Hermitian
quantum systems admitting entirely real spectra and unitary time evolution. The
examples considered include simple harmonic oscillators with complex angular
frequencies, Stark (Zeeman) effect with non-Hermitian interaction, non-
Hermitian general quadratic form of N boson (fermion) operators, symmetric
and asymmetric XXZ spin chain in the complex magnetic field, non-Hermitian
Haldane–Shastry spin chain and Lipkin–Meshkov–Glick model.

PACS numbers: 03.65.−w, 03.65.Ca, 02.30.Ik

1. Introduction

In standard quantum physics, an operator that is equal to its own complex-conjugate
transpose is defined as Hermitian. Operators not satisfying the above criteria are termed
non-Hermitian and have been used extensively to stimulate dissipative quantum processes.
However, the discovery [1–5] of a class of such non-Hermitian Hamiltonian admitting
entirely real spectra with unitary time evolution has given a scope to review this standard
practice and broaden our understanding of quantum physics [1–22]. The reality of the
entire spectra is related to an underlying unbroken combined parity (P) and time-reversal
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(T ) symmetry and/or pseudo-hermiticity of the non-Hermitian Hamiltonian with a positive-
definite metric in the Hilbert space [1–4]. Apart from a very few known examples, one
of the major technical difficulties in the study of PT -symmetric and/or pseudo-Hermitian
quantum physics is to find the appropriate basis with respect to which the non-Hermitian
Hamiltonian becomes Hermitian. It may be mentioned here that the description of a
pseudo-Hermitian Hamiltonian is incomplete in the absence of an explicit knowledge of
the metric in the Hilbert space, since neither the completeness of states nor the unitarity
can be guaranteed. There are known methods based on spectral decomposition [13, 16],
perturbation theory [14, 17], Moyal product [15], group theory [10], etc that find an exact
or approximate form of the metric in the Hilbert space of a given PT -symmetric or pseudo-
Hermitian Hamiltonian. However, the list is still not exhaustive and there are always scopes for
introducing alternative methods and beautiful models based on inherent simplicity and physical
relevance.

The purpose of this paper is to present a class of pseudo-Hermitian Hamiltonian with an
explicit form of the metric in the Hilbert space. The examples include simple harmonic
oscillators with complex angular frequencies, Stark (Zeeman) effect with non-Hermitian
interaction, non-Hermitian general quadratic form of N boson (fermion) operators, XXZ

spin chains with a complex magnetic field, non-Hermitian Haldane–Shastry spin chain [23]
and Lipkin–Meshkov–Glick (LMG) [24] model. A non-Hermitian asymmetric XXZ spin
Hamiltonian that is generally used as the time evolution operator of certain reaction–diffusion
processes and growth phenomenon is shown to be pseudo-Hermitian and may thus be used
to describe non-dissipative processes by using a modified inner product in the Hilbert space.
The approach used in this paper is the following. The basic canonical commutation relations
defining a quantum system are realized in terms of operators that are Hermitian with respect
to a pre-determined positive-definite metric η+ in the Hilbert space. Consequently, any
Hamiltonian that is constructed using appropriate combination of these operators is Hermitian
with respect to η+. However, in general, the same Hamiltonian may not be Hermitian with
respect to the standard Dirac-hermiticity condition, thereby giving rise to a pseudo-Hermitian
Hamiltonian.

This paper is organized as follows. In the beginning of section 2, known results on
pseudo-Hermitian operators [2–4] are reviewed. Thereafter, a general prescription to construct
a pseudo-Hermitian quantum system with a pre-determined metric is presented. In section 3,
examples of single-particle pseudo-Hermitian quantum systems are given. A two-dimensional
pseudo-Hermitian simple harmonic oscillator, Stark and Zeeman effect with non-Hermitian
interaction are discussed in sections 3.1, 3.2 and 3.3, respectively. Section 4 contains examples
of many-particle pseudo-Hermitian quantum systems. In particular, general quadratic forms
of boson and fermion operators are discussed in sections 4.1 and 4.2, respectively. In
section 4.1, Schwinger’s oscillator model of angular momentum is generalized to pseudo-
Hermitian operators and a non-Hermitian version of the Lipkin–Meshkov–Glick model is
introduced. The pseudo-Hermitian XXZ spin chain and Haldane–Shastry spin chain are
presented in section 4.3. Finally, the findings of this paper are summarized with possible
implications in section 5.

2. Formalism

An operator Â that is related to its adjoint Â† through a similarity transformation is known as
pseudo-Hermitian [2, 3]:

Â† = ηÂη−1. (1)
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In general, the operator η is not unique for a given pseudo-Hermitian operator Â. Among all
possible forms of η, a positive-definite η+ is chosen to define a modified inner product in the
Hilbert space of Â as follows:

〈〈·, ·〉〉η+ := 〈·, η+·〉. (2)

The operator η+ plays the role of a metric in the Hilbert space and the standard inner product
〈·, ·〉 is obtained in the limit when η+ is replaced by the identity operator. The Hilbert space
that is endowed with the metric η+ with the modified inner product (2) is denoted as Hη+ .
On the other hand, the Hilbert space that is endowed with the standard inner product 〈·, ·〉 is
denoted as HD . The subscript D indicates that the Dirac-hermiticity condition is used in this
Hilbert space. The pseudo-Hermitian operator Â is Hermitian in the Hilbert space Hη+ . In
an alternative formulation of the same problem, Â can be mapped to an operator Â that is
Hermitian in HD . In particular,

Â = ρÂρ−1, ρ := √
η+. (3)

The operator Â satisfying the above relation is known as quasi-Hermitian [4]. It may be noted
that the Hilbert spaces of Â and Â are different. Corresponding to a Hermitian operator B̂
in the Hilbert space HD of Â, a Hermitian operator B̂ in the Hilbert space Hη+ of Â can be
defined as [2]

B̂ = ρ−1B̂ρ. (4)

The above relation is important for the identification of physical observables in the Hilbert
space Hη+ of Â. An interesting consequence of equation (4) is that a set of operators B̂i

obey the same canonical commutation relations as those satisfied by the corresponding set of
operators B̂i and vice versa.

The coordinates and the conjugate momenta which are Hermitian in the Hilbert space HD

that is endowed with the standard inner product 〈·, ·〉 are denoted as (x, y, z) and (px, py, pz),
respectively. In the coordinate space representation, the momenta and the orbital angular
momentum operators have the following standard form:

px = −i
∂

∂x
, py = −i

∂

∂y
, pz = −i

∂

∂z
,

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx.

(5)

A positive-definite metric η+ in the Hilbert space Hη+ may now be considered:

η+ := e−2γLz , γ ∈ R. (6)

Metric of the form (6) has been considered previously in the study of a variety of pseudo-
Hermitian quantum mechanical systems [2, 7, 8, 20]. The operators (x, y) and (px, py) are
no more Hermitian in the Hilbert space Hη+ . A new set of canonical conjugate operators that
are Hermitian in the Hilbert space Hη+ may be introduced as follows:

X = x cosh w + iy sinh w, Y = −ix sinh w + y cosh w, Z = z,

PX = px cosh w + ipy sinh w, PY = −ipx sinh w + py cosh w, PZ = pz,

w ≡ γ + iξ, ξ ∈ R.

(7)

The transformation matrix M,

M ≡
(

cosh w i sinh w

−i sinh w cosh w

)
, (8)

relating (X, Y ) to (x, y) and (PX, Py) to (px, py), has appeared previously in the study of
two-level pseudo-Hermitian quantum systems [2, 20]. Note that the length remains invariant
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under the transformation defined by equation (7), i.e. R2 ≡ X2 + Y 2 + Z2 = r2 ≡ x2 + y2 + z2.
The same is true for the total momentum square, P 2 ≡ P 2

X + P 2
Y + P 2

Z = p2 ≡ p2
x + p2

y + p2
z .

The operators (X, Y, PX, PY ) defined by equation (7) are not Hermitian with respect to the
standard inner product for γ �= 0. The angular momentum operators,

LX := YPZ − ZPY , LY := ZPX − XPZ,

LZ := XPY − YPX, L2 := L2
X + L2

Y + L2
Z,

(9)

are related to Lx , Ly , Lz and L2 := L2
x + L2

y + L2
z through the equations

LX = cosh wLx + i sinh wLy,

LY = −i sinh wLx + cosh wLy, (10)

LZ = Lz, L2 = L2.

For γ �= 0, the operators LX and LY are not Hermitian with respect to the standard inner
product, but are Hermitian with respect to the modified inner product. The operators
(Z, PZ,LZ,R, P,L2) or equivalently (z, pz,Lz, r, p,L2) are Hermitian in HD as well as
in Hη+ . The operators X, Y, PX, PY , LX,LY are Hermitian in Hη+ and the quasi-hermiticity
[4] of these operators may be checked as follows:

x = (Uρ)X(Uρ)−1, y = (Uρ)Y (Uρ)−1, px,y = (Uρ)PX,Y (Uρ)−1,

Lx,y = (Uρ)LX,Y (Uρ)−1, U := e−iξLz , U † = U−1 = eiξLz ,
(11)

where t∗ denotes complex conjugation of t. The property of quasi-hermiticity of the operators
X, Y, PX,Y , LX,Y may be shown without the use of the unitary operator U. For example,

ρXρ−1 = x cos ξ − y sin ξ,

ρYρ−1 = x sin ξ + y cos ξ.
(12)

Similar relations between PX,Y (LX,Y ) and px,y(Lx,y) also exist. The unitary operation using
U has been performed in equation (11) to rotate away insignificant terms in the expressions
of equivalent Hermitian operators in HD . For γ = 0, η+ reduces to the identity operator, and
hence, both the Hilbert spaces become identical. If we further fix ξ = 0, (X, Y,Z, PX, PY , PZ)

become identical to (x, y, z, px, py, pz).
The metric operator η+ is Hermitian. If the factor −2γ is replaced by a purely imaginary

number −iφ, φ ∈ (0, 2π), it would correspond to a rotation by an angle φ around the z-axis.
The operator η+ given in equation (6) may thus be referred to as generating a ‘complex rotation’
around the z-axis by an amount equal to 2γ . The metric operator corresponding to a ‘complex
rotation’ around the x- or y-axis or even around any arbitrary three-dimensional unit vector
n̂ may be constructed: η̂+ := e−2γ n̂· 	L, where 	L is the three-dimensional angular momentum
operator and the results of this paper may be generalized. In this paper, however, discussion
is restricted to the metric η+ given by equation (6), unless mentioned otherwise.

Suitable combinations of the operators X, Y,Z, PX, PY , PZ would result in a very large
number of pseudo-Hermitian quantum systems, since these operators are pseudo-Hermitian
by construction. A general non-relativistic pseudo-Hermitian quantum system in an external
static electric and magnetic field is described by a Hamiltonian of the form [2, 17, 18]

H = 1

2m
( 	P − e 	A(X, Y,Z))2 + V (X, Y,Z) + eA0(X, Y,Z), (13)

where the vector potential 	A(X, Y,Z), scalar potential A0(X, Y,Z) and potential V (X, Y,Z)

are real functions of their arguments. The constants m and e are the mass and the charge of the
particle, respectively. The form of the minimal coupling to the gauge field in the Hamiltonian
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H is determined by demanding U(1) invariance [17, 18]. Subtleties involving the gauge
transformation in pseudo-Hermitian quantum systems are discussed in [17, 18]. The reason
for a straightforward and form-invariant extension of the minimal gauge coupling principle
of a Hermitian theory to a pseudo (quasi)-Hermitian theory could be understood in a simple
manner. The Hamiltonian H is Hermitian in Hη+ and non-Hermitian in HD , when expressed
in terms of (x, y, z, px, py, pz). However, it can be mapped to a Hermitian Hamiltonian h in
HD through the similarity transformation:

h = (Uρ)H(Uρ)−1

= 1

2m
(	p − e 	A(x, y, z))2 + V (x, y, z) + eA0(x, y, z). (14)

The minimal gauge coupling in h due to U(1) invariance has the standard form. Thus, the form
of the coupling to the gauge field in H is justified, if the standard minimal coupling principle
due to U(1) gauge invariance is to be maintained for the equivalent Hermitian Hamiltonian h.
The Coulomb-gauge condition in HD is 	p · 	A(x, y, z) = 0, and in Hη+ , it is

	P · 	A(X, Y,Z) = (Uρ)−1(	p · 	A(x, y, z))(Uρ) = 0. (15)

It may be noted that H and h are isospectral, since they are related to each other through a
similarity transformation. However, the eigenfunctions are different. The electromagnetic
transition rate between two given states is also identical [17, 18].

The spin degrees of freedom of a particle can also be included in the discussion of a
non-relativistic pseudo-Hermitian quantum system. To this end, a positive-definite metric in
the Hilbert space may be defined as the direct product of η+ and the metric ζ+ corresponding
to the spin degrees of freedom,

ηTotal
+ := η+ ⊗ ζ+, ζ+ := e−2δm̂· 	S , δ ∈ R, (16)

where 	S is the spin operator with components Sx,y,z which are Hermitian with respect to the
standard inner product and m̂ is a unit vector. The Hermitian spin operators TX,Y,Z with respect
to the modified inner product 〈〈·, ·〉〉ζ+ := 〈·, ζ+·〉 may now be constructed using equation (4).
Restricting the discussion to a simpler case where m̂ corresponds to a unit vector along Sz, the
operators TX,Y,Z may be defined as

TX := cosh βSx + i sinh βSy,

TY := −i sinh βSx + cosh βSy, (17)

TZ := Sz, β ≡ δ + iχ, χ ∈ R.

It may be noted that (TZ, T 2) and (Sz,S2) are Hermitian with respect to both 〈·, ·〉 and 〈〈·, ·〉〉ζ+ .
The spin–orbit interaction of the form HLS = f (R)	L · 	T , where f (R) is a real function of R, is
Hermitian with respect to the inner product 〈〈·, ·〉〉ηTotal

+
. Thus, the Hamiltonian H̃ = H + HLS

or its variants involving both spatial and spin degrees of freedom are Hermitian in the Hilbert
space HηTotal

+
that is endowed with the metric ηTotal

+ .
Several examples realizing the above formalism are considered in the next few sections.

Examples in this paper are chosen based on their simplicity, physical relevance and, in
some cases, exact solvability. The last criterion is very important in the following sense.
The positive-definite metric in the Hilbert space cannot be calculated exactly for many of
the pseudo-Hermitian quantum systems known so far. Perturbative and/or numerical methods
are used to find approximate form of the metric. Accuracy of these methods may be checked
by using an exactly solvable pseudo-Hermitian system. The physical relevance of the chosen
quantum system is also very important, since experimental realization of the predictions
emanating from pseudo-Hermitian/PT -symmetric quantum mechanics is desirable.
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3. Examples: single-particle system

In this section, examples of (i) a two-dimensional simple harmonic oscillator with complex
angular frequencies, (ii) Stark effect in an external uniform complex electric field and (iii)
Zeeman effect with non-Hermitian interaction are considered.

3.1. Simple harmonic oscillator

A PT -symmetric oscillator in one dimension has been considered in the literature [11], where
the Hermitian and the non-Hermitian Hamiltonian in HD are related to each other through
an imaginary shift of the coordinate. A two-dimensional simple harmonic oscillator with
complex angular frequencies {ω1, ω2, ω3} that admit entirely real spectra is presented below:

H = 1

2m

(
p2

x + p2
y

)
+

m

2

(
ω2

1x
2 + ω2

2y
2 + ω2

3xy
)
,

mω2
1 = k1 cos h2w − k2 sinh2 w − ik3 cosh w sinh w,

mω2
2 = k2 cos h2w − k1 sinh2 w + ik3 cosh w sinh w,

mω2
3 = 2i(k1 − k2) cosh w sinh w + k3(cos h2w + sinh2 w),

(18)

where {k1, k2, k3,m} ∈ R. The non-Hermitian Hamiltonian in HD is related to a Hermitian
Hamiltonian in HD through a complex-hyperbolic transformation of the form (7). It is worth
mentioning here that simple harmonic oscillators with complex angular frequencies appear
in the description of electromagnetic pulse propagation in a free-electron laser [25]. Simple
harmonic oscillators with complex angular frequencies have also been studied in the context
of squeezed states [26], coherent states [27], tunneling phenomenon in non-Hermitian theory
[28] and resonant states [29]. In general, the eigenvalues for the above cases are complex
and the time evolution is non-unitary. Within the context of PT -symmetric theory on a
non-commutative space or with a deformed Heisenberg algebra, a simple harmonic oscillator
with complex mass and complex angular frequency that admits real spectra within restricted
regions of the parameter space has also been studied [30]. The harmonic oscillator Hamiltonian
presented in this paper is on the standard Euclidean space and with real mass.

Although H is non-Hermitian in HD , it is Hermitian in Hη+ . In particular, H can be
rewritten as

H = 1

2m

(
P 2

X + P 2
Y

)
+

1

2
(k1X

2 + k2Y
2 + k3XY). (19)

The quasi-hermiticity of H can also be shown by mapping it to h := (Uρ)H(Uρ)−1:

h = 1

2m

(
p2

x + p2
y

)
+

1

2
(k1x

2 + k2y
2 + k3xy), (20)

where the operators U and ρ are as defined below:

U := e−iξLz , ρ := e−γLz . (21)

The Hamiltonian h is Hermitian in HD . The energy eigenvalues of h and hence, of H are
determined for the range of the parameters k1,2 > 0, 4k1k2 > k2

3 as follows:

Enx,ny
=

(
nx +

1

2

)
λ+ +

(
ny +

1

2

)
λ−,

λ± ≡ 1

2
√

m

(
k1 + k2 ±

√
k2

3 + (k1 − k2)2
) 1

2 , nx, ny = 0, 1, 2, . . . .

(22)
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The corresponding eigenfunctions of H are

�nx,ny
(u, v) = ewLz(u,v)ψnx

(u)ψny
(v), Lz(u, v) = −i

(
u

∂

∂v
− v

∂

∂u

)
, (23)

where ψn(u) corresponds to the nth normalized eigenfunction of the standard one-dimensional
simple harmonic oscillator and the coordinates (u, v) are obtained from (x, y) through a
rotation on the two-dimensional plane by an angle θ :

θ = 1

2
tan−1 k3

k1 − k2
, k1 �= k2; θ = π

4
, k1 = k2. (24)

For λ+ �= λ− (i.e. k1 �= k2 and k3 �= 0), neither ψnx
(u)ψny

(v) are eigenfunctions of Lz(u, v)

nor a basis can be chosen in which simultaneous eigenfunctions of Lz(u, v) and h(u, v) can
be constructed. The following identity can be shown using the properties of the Hermite
polynomials:

L̄z[ψn(u)ψm(v)] = mψn+1(u)ψm−1(v) − nψn−1(u)ψm+1(v), L̄z ≡ iLz. (25)

It may be noted that the ground state �0,0(u, v) = ψ0(u)ψ0(v). However, the excited states
are determined in terms of an infinite series and a general term in this series will contain an
expression of the form

L̄k
z[ψn(u)ψm(v)] =

k
2∑

i=0

[Akiψn+2i (u)ψm−2i (v) + Bkiψn−2i (u)ψm+2i (v)] , even k

=
k−1

2∑
i=0

[Akiψn+2i+1(u)ψm−2i−1(v) + Bkiψn−2i−1(u)ψm+2i+1(v)], odd k,

(26)

where the real constants Aki and Bki are determined in terms of n and m for fixed k and i.
Thus, the wavefunction �nx,ny

(u, v) is expressed in terms of its arguments in a non-trivial
way. It is worth mentioning that the explicit form of �nx,ny

in terms of an infinite series is
not required to calculate expectation values or matrix elements of any observables in Hη+ .
The form of �nx,ny

, as given in equation (23), is sufficient for this purpose. The factor ewLz

cancels out with a similar factor coming from the metric in the Hilbert space. In particular,
〈〈�n′

xn
′
y
|Â|�nxny

〉〉η+ = 〈ψn′
x
(u)ψn′

y
(v)|Â|ψnx

(u)ψny
(v)〉. The orthonormal property of ψnx

together with equation (23) can be used to show that �nx,ny
(u, v) for all allowed values of the

quantum numbers nx and ny constitute a complete set of orthonormal wavefunctions in Hη+ .

3.2. Stark effect

A non-Hermitian Hamiltonian in HD may be considered as

H = p2

2m
− e2

r
+ eE(x cosh w + i y sinh w), E ∈ R, (27)

which has a similarity with the Hamiltonian describing the Hydrogen atom in an external
uniform ‘static complex electric field’ 	E = −E(cosh wî + ĵ i sinh w), where î, ĵ correspond to
the unit vectors along the x- and y-directions, respectively. It may be noted that although the
magnitude of the external electric field is real, the y-component of the electric field is purely
imaginary. This is the reason for identifying H in HD as describing the Stark effect in a ‘static
complex electric field’. It is worth mentioning here that with the proper identification of a set of
canonical operators, H in Hη+ can be identified as describing the Stark effect with a real electric

7
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field. The possibility of generating non-Hermitian interaction terms of H in HD in the effective
description of some hitherto unknown quantum mechanical system which is not subjected to
any external electric field also exists. However, in the absence of any concrete proposal
on how such non-Hermitian interaction could be realized in realistic physical systems, the
Hamiltonian should be considered as hypothetical. Nevertheless, the related discussions may
be useful to elucidate many technical issues related to pseudo-Hermitian quantum systems.

The Hamiltonian H can be rewritten as

H = P 2

2m
− e2

R
+ eEX, (28)

implying that it is Hermitian in Hη+ . The equivalent Hermitian Hamiltonian in HD ,

h := (Uρ)H(Uρ)−1 = p2

2m
− e2

r
+ eEx, (29)

can be cast into the standard form,

h̃ := e−i π
2 Ly h ei π

2 Ly h = p2

2m
− e2

r
+ eEz, (30)

by a π
2 rotation around the y-axis, where the operators U and ρ are as defined in equation (21).

The operators h, h̃ and H are isospectral, since they are related to each other through similarity
transformations. Following the discussions of [17, 18], the electromagnetic transition rate
between any two states is also identical for h and H.

The perturbative analysis of h(h̃) is given in any standard text on quantum mechanics.
A perturbative analysis of the pseudo-Hermitian H in equation (27) may also be carried out
directly to obtain the known results. The Hamiltonian H can be rewritten in terms of the
unperturbed Hamiltonian H0 and the perturbation H ′ as

H = H0 + H ′, H0 = p2

2m
− e2

r
, H ′ = eE (x cosh w + i y sinh w) . (31)

The unperturbed Hamiltonian H0 is Hermitian in HD and commutes with L2 and Lz. A
complete set of orthonormal eigenstates of H0 with energy En in HD are denoted as ψnlm,
where n is the principal quantum number, l is the azimuthal quantum number and m is the
magnetic quantum number. The principal quantum number n can take any values from the set
of positive integers, l = 0, 1, . . . , n − 1 and m = −l,−l + 1, . . . , l − 1, l. The states ψnlm are
simultaneous eigenstates of H, L2 and Lz. The perturbing Hamiltonian H ′ is non-Hermitian
in HD and, in general,

〈ψnlm|H ′|ψn′l′m′ 〉 �= 〈ψn′l′m′ |H ′|ψnlm〉∗, (32)

which can be checked easily by using the following identities:

〈ψnlm|H
′

eE
|ψn′l′m′ 〉 = 〈ψnlm|ρ−1xρ|ψn′l′m′ 〉 = e(m−m′)γ 〈ψnlm|x|ψn′l′m′ 〉,

〈ψn′l′m′ |H
′

eE
|ψnlm〉 = 〈ψn′l′m′ |ρ−1xρ|ψnlm〉 = e−(m−m′)γ 〈ψn′l′m′ |x|ψnlm〉.

(33)

The matrix elements are identical either for m = m′ or in the Hermitian limit γ = 0.
The first-order correction to the ground state vanishes identically, since 〈ψ100|H ′|ψ100〉 =
eE〈ψ100|x|ψ100〉 = 0. The second-order correction to the ground state and the first-order
correction to the first excited state involve product of the matrix elements of the form

〈ψnlm|H ′|ψn′l′m′ 〉〈ψn′l′m′ |H ′|ψnlm〉 = (eE)2 〈ψnlm|x|ψn′l′m′ 〉〈ψn′l′m′ |x|ψnlm〉
= (eE)2 |〈ψnlm|x|ψn′l′m′ 〉|2, (34)

8
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which is real and its value is equivalent to the case when the perturbation is taken as eEx. It
is worth recalling at this point that in the perturbative analysis of the equivalent Hermitian
Hamiltonian h := ρHρ−1 = H0 + eEx, the perturbing term is indeed given by eEx. Thus, the
known results are reproduced. The change in the energy En of the state ψnlm due to perturbative
corrections at all orders in H ′ higher than the first involves products of matrix elements of the
form

〈ψnlm|H ′|ψnklkmk
〉〈ψnklkmk

|H ′|ψnk−1lk−1mk−1〉 · · · 〈ψn2l2m2 |H ′|ψn1l1m1〉〈ψn1l1m1 |H ′|ψnlm〉, (35)

where k � 1 and all the intermediate states ψnk,lk,mk
, ψnk−1lk−1mk−1 , . . . , ψn1,l1,m1 are different

from the state ψn,l,m. Using identities (33), it may now be checked that the expression in
equation (35) is equivalent to the following:

(eE)k+1〈ψnlm|x|ψnklkmk
〉〈ψnklkmk

|x|ψnk−1lk−1mk−1〉 · · · 〈ψn2l2m2 |x|ψn1l1m1〉〈ψn1l1m1 |x|ψnlm〉. (36)

Further, for the application of the degenerate perturbation theory for n > 1, the elements of
the n2 × n2 matrix M determining the secular equation is of the form

[M]ij = aij eγi−γj , aij = aji ∈ R, γi ∈ R. (37)

Any matrix of this type can be shown to be pseudo-symmetric, i.e. M is related to its transpose
MT though a similarity transformation, MT = ηMη−1, with the similar matrix η being given
by [η]ij = e−2γi δij . Consequently, M can be transformed to a symmetric matrix M as
M = ρMρ−1 with ρ := √

M and [M]ij = aij . If the degenerate perturbation theory is
applied to h with eEx as the perturbation, the matrix determining the secular equation is
precisely of the form M. Thus, the perturbative analysis of H and h gives identical results at
each order of the perturbation.

A comment is in order before the end of this section. The Hamiltonian H0 is also
Hermitian in the Hilbert space Hη+ . A complete set of orthonormal states of the Hamiltonian
H0 with the energy En may be constructed in the Hilbert space Hη+ as φnlm = (Uρ)−1ψnlm.
The perturbing term H ′ = eEX is also Hermitian in Hη+ and the states φnlm can be used to
calculate perturbative corrections at different orders to the energy En. The corrections to the
energy eigenvalues may be obtained by replacing the standard inner product 〈·, ·〉 with the
modified inner product 〈〈·, ·〉〉η+ . The identity

〈〈φnlm|X|φn′l′m′ 〉〉η+ = 〈ψnlm|x|ψn′l′m′ 〉 (38)

is useful in establishing one-to-one correspondence between the perturbative corrections of H
and h at each order. For example, the expansion of the ground-state energy Ẽ1 of H up to the
second order is obtained as

Ẽ1 = E1 + eE〈〈φ100|X|φ100〉〉η+ + (eE)2
∑

n(�=1),l,m

|〈〈φ100|X|φnlm〉〉η+ |2
E1 − En

= E1 + eE〈ψ100|x|ψ100〉 + (eE)2
∑

n(�=1),l,m

|〈ψ100|x|ψnlm〉|2
E1 − En

. (39)

The results of perturbative analysis of H either in HD or in Hη+ would give identical results at
each order of perturbation.

3.3. Zeeman effect

A Hermitian Hamiltonian in Hη+ describing the Zeeman effect may be constructed as follows:

H = P 2

2m
− e2

R
+

1

2m2R

dV (R)

dR
	L · 	T +

e

2m
	B · (	L + 2 	T ) +

e2

8m
( 	B × 	R)2, (40)
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where 	B is an external uniform magnetic field and V (R) is a real function of its argument
which can be chosen to be the Coulomb potential. Unlike the case of the Stark effect
where the external electric field is complex, the magnetic field 	B describing the Zeeman
effect is real both in HD and in Hη+ . It should be mentioned here that the vector potential
producing the real magnetic field is not necessarily real in HD for which the relevant
position operators are (x, y, z). For example, the vector potential 	A with components
Ax = B

2 (ix sinh w − y cosh w), Ay = B
2 (x cosh w + iy sinh w) and Az = 0 produces real

magnetic field along the z-direction. Both Ax and Ay have a real part and an imaginary part.
The study of quantum mechanical systems with imaginary gauge potential has relevance in
understanding different kinds of phase transitions [31]. Thus, the consideration of complex
gauge potential is physically well motivated.

The Hamiltonian is non-Hermitian in HD , as can be seen by rewriting it in terms of the
variables x, y, z,Lx,y,z,Sx,y,z. The Hamiltonian is Hermitian in both HD and in Hη+ in the
following two limits: (i) γ = δ = 0 and (ii) γ = δ, ξ = χ, 	B = | 	B|k̂, where k̂ is a unit
vector along the z-direction. The second limit is interesting in the following sense. The kinetic
energy and the Coulomb potential terms are Hermitian both in HD and in Hη+ without any
restriction on the parameters. With the choice of γ = δ, ξ = χ , the spin–orbit interaction
term of the Hamiltonian is Hermitian in HD as well as in Hη+ . The origin of non-hermiticity
of the last two terms in HD is physically well motivated through the introduction of imaginary
gauge potential. These two terms also become Hermitian in HD if the magnetic field is taken
along the z-direction. Thus, the direction of the external magnetic field can be varied to switch
over from Hermitian to non-Hermitian description of H in HD .

The equivalent Hermitian Hamiltonian h := (Uρ)H(Uρ)−1 in HD has the following
form:

h = p2

2m
− e2

r
+

1

2m2r

dV (r)

dr
	L · 	S +

e

2m
	B · ( 	L + 2 	S) +

e2

8m
( 	B × 	r)2. (41)

Both H and h are isospectral and have an identical electromagnetic transition rate for two
given states. However, the eigenfunctions are different from each other. The study on the
eigenvalue problem of h is included in any standard book on quantum mechanics, and thus,
no discussion in this regard is given in this paper. Further, a direct perturbative analysis of H
either in the Hilbert space HD or in Hη+ may be carried out following the discussions in the
previous section on the Stark effect.

An experimental realization or verification of the predictions emanating from the study
of pseudo-Hermitian/PT -symmetric quantum mechanics is desirable. In this regard, the
examples considered in this section may offer promising scenarios. If non-Hermitian
interactions of the form described in this paper can be produced in the laboratory with γ

being one of the externally controllable parameters, the transition rate between two allowed
levels may be studied for γ = 0 and γ �= 0. It may be recalled here that in the Hilbert
space HD , γ = 0 and γ �= 0 correspond to Hermitian and non-Hermitian Hamiltonians,
respectively. According to the prediction of this paper, the transition rate between any two
allowed levels would be independent of γ , if nature realizes pseudo-Hermitian/PT -symmetric
quantum systems.

4. Examples: many-body system

In this section, examples from many-body quantum systems are considered. General quadratic
forms of N bosons (fermions) with non-Hermitian interactions, symmetric and asymmetric
XXZ spin-chain Hamiltonian in an external uniform, complex magnetic field are considered

10
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in this section. A non-Hermitian version of the Haldane–Shastry spin chain and Lipkin–
Meshkov–Glick model is also discussed.

4.1. Hamiltonian: general quadratic form of boson operators

The general quadratic form of N boson operators satisfying the commutation relations[
ai, a

†
j

] = δij , [ai, aj ] = 0 = [
a
†
i , a

†
j

]
, i, j = 1, 2, . . . , N (42)

appears in many diverse branches of physics. The operator a
†
i is the adjoint of ai in the

Hilbert space HD and ai (a
†
i ) may be identified as the annihilation (creation) operator. A non-

Hermitian general quadratic form involving these operators may be constructed as follows:

H = 1

2

N∑
i,j=1

[
αij

(
ewi−wj a

†
i aj + e−(wi−wj )a

†
j ai

)
+ βij

(
e−(wi+wj )aiaj + ewi+wj a

†
i a

†
j

)]
,

wi ≡ γi + iξi, {γi, ξi, αij , βij } ∈ R, αij = αji, βij = βji .

(43)

In a coordinate space realization of the algebra (42), H corresponds to a quantum system of
N simple harmonic oscillators interacting with each other through non-Hermitian interaction
in one dimension. Alternatively, the same Hamiltonian H can be identified as that of an
N-dimensional oscillator with non-Hermitian interaction. The non-Hermitian interactions in
equation (43) may be interpreted as arising due to an imaginary gauge potential. It may be
noted that such imaginary gauge potentials are also relevant in the context of metal–insulator
transitions or depinning of flux lines from extended defects in type-II superconductors [31].
In fact, with nearest-neighbor interaction only and βij = 0 ∀ i, j , H resembles the random-
hopping model of [31]. For N = 1, H is known as the Swanson Hamiltonian [6] and has been
studied extensively in the literature in the context of a PT -symmetric and pseudo-Hermitian
quantum system. It is worth mentioning here that a non-Hermitian PT -symmetric two-mode
Bose–Hubbard system has been studied in [22]. The Hamiltonian in [22] is different from the
Hamiltonian in equation (43).

The claim of this paper is that the non-Hermitian H in equation (43) admits entirely real
spectra with unitary time evolution for arbitrary N and within a fixed region in the parameter
space. To substantiate this claim, the metric operator η+ and the similar operator ρ := √

η+

may be introduced as

η+ :=
N∏

i=1

e−2γia
†
i ai , ρ :=

N∏
i=1

e−γia
†
i ai . (44)

A set of operators Ai and their adjoint A
†
i in the Hilbert space of Hη+ are introduced as follows:

Ai := ρ−1aiρ = e−γi ai, A
†
i := ρ−1a

†
i ρ = eγi a

†
i , (45)

which satisfy the same algebra given by equation (42). A general eigenstate of the total boson
number operator in the Hilbert space HD may be introduced as |n1, . . . , ni, . . . , nN 〉HD

with
the following relations:

ai |n1, . . . , ni, . . . , nN 〉HD
= √

ni |n1, . . . , ni − 1, . . . , nN 〉HD
,

a
†
i |n1, . . . , ni, . . . , nN 〉HD

=
√

ni + 1|n1, . . . , ni + 1, . . . , nN 〉HD
.

(46)

The corresponding state in the the Hilbert space Hη+ is determined as

|n1, . . . , ni, . . . , nN 〉Hη+
=

N∏
k=1

eγknk |n1, . . . , ni, . . . , nN 〉HD
, (47)

11
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with the action of Ai(A
†
i ) on |n1, . . . , ni, . . . , nN 〉Hη+

given by the following relations:

Ai |n1, . . . , ni, . . . , nN 〉Hη+
= √

ni |n1, . . . , ni − 1, . . . , nN 〉Hη+
,

A
†
i |n1, . . . , ni, . . . , nN 〉Hη+

=
√

ni + 1|n1, . . . , ni + 1, . . . , nN 〉Hη+
.

(48)

The states |n1, . . . , ni, . . . , nN 〉Hη+
form a complete set of orthonormal states in Hη+ , while

|n1, . . . , ni+1, . . . , nN 〉HD
form a complete set of orthonormal states in HD .

The Hamiltonian H is Hermitian in Hη+ and this can be checked easily by rewriting it as

H = 1

2

N∑
i,j=1

[
αij

(
ei(ξi−ξj )A

†
iAj + e−i(ξi−ξj )A

†
jAi

)
+ βij

(
e−i(ξi+ξj )AiAj + ei(ξi+ξj )A

†
iA

†
j

)]
. (49)

The Hamiltonian H can be mapped to a Hamiltonian h that is Hermitian in HD:

h = ρHρ−1

= 1

2

N∑
i,j=1

[
αij

(
ei(ξi−ξj )a

†
i aj + e−i(ξi−ξj )a

†
j ai

)
+ βij

(
e−i(ξi+ξj )aiaj + ei(ξi+ξj )a

†
i a

†
j

)]
, (50)

thereby showing the quasi-hermiticity of H. A further unitary transformation removes the
phase factors from h. In particular,

U :=
N∏

i=1

e−iξia
†
i ai

h̃ = UhU−1 = 1

2

N∑
i,j=1

[
αij

(
a
†
i aj + a

†
j ai

)
+ βij

(
aiaj + a

†
i a

†
j

)]
.

(51)

A general prescription to diagonalize (51) has been given in [32]. The basic steps involve the
identification of the following 2N × 2N matrices:

D =
(

α̂ β̂

β̂ α̂

)
, Î =

(
I 0
0 −I

)
, Q := ÎD =

(
α̂ −β̂

β̂ −α̂

)
, (52)

where I is an N × N identity matrix, and α̂ and β̂ are N × N matrices with the elements
[α̂]ij = αij and [β̂]ij = βij . It can be shown that the eigenvalues of the matrix Q are of the form
� ∈ {�1,�2, . . . , �N,−�1,−�2, . . . ,−�N }. Further, if ûi is the eigenvector corresponding
to the eigenvalue �i of Q, then −�i is another eigenvalue of Q with the eigenvector Ĵ ûi ,
where Ĵ is an anti-linear, idempotent operator that commutes with D and anti-commutes with
Î [32]. The energy eigenvalues of h̃ are

E{ni } =
N∑

i=1

(
ni +

1

2

)
�i, �i > 0 ∀ i. (53)

The stability criteria require a positive-definite �i and, consequently, these results are valid
only in those regions in the parameter space where D is strictly positive [32].

A comment is in order before the end of this section. Schwinger’s oscillator model of
angular momentum can be realized in terms of A1, A2 and their adjoint in Hη+ . The following
angular momentum operators satisfying the SU(2) algebra may be defined:

Ĵ + := A
†
1A2 = eγ1−γ2a

†
1a2,

Ĵ− := A
†
2A1 = e−(γ1−γ2)a

†
2a1, (54)

Ĵ z := 1
2

(
A

†
1A1 − A

†
2A2

) = 1

2

(
a
†
1a1 − a

†
2a2

)
,

12
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where Ĵ + is the adjoint of Ĵ− in Hη+ . The operator Ĵ z is Hermitian in HD as well as in Hη+ .
The usual physical interpretation of Schwinger’s oscillator model of angular momentum is
equally applicable to the generators Ĵ±, Ĵ z with the help of equations (46)–(48). Suitable
combinations of these operators would result in a pseudo-Hermitian Hamiltonian with the
metric η+. One such example is the non-Hermitian deformation of the LMG model [24]:

HLMG = ω0Ĵ z + ω
(
Ĵ 2

− + Ĵ 2
+

)
, (55)

where ω0 and ω are real parameters. In the Hermitian limit, γ1 = γ2 = 0, the standard LMG
model is reproduced which has been studied extensively in the literature [33]. For γ1 �= 0 �= γ2

HLMG is isospectral with the standard LMG model.

4.2. Hamiltonian: general quadratic form of fermion operators

A set of canonical Fermi operators satisfying the anti-commutation relations{
ci, c

†
j

} = 2δij , {ci, cj } = 0 = {
c
†
i , c

†
j

}
, i, j = 1, 2, . . . , N, (56)

and a non-Hermitian Hamiltonian in terms of these operators may be introduced in HD as
follows:

H =
N∑

i,j=1

Aij c
†
i cj ewi−wj +

1

2

N∑
i,j=1

Bij

(
c
†
i c

†
j e(wi+wj ) + cicj e−(wi+wj )

)
,

Aij = Aji ∈ R, Bij = −Bji ∈ R.

(57)

The complex parameters wi’s are defined in equation (43). The Hamiltonian H is Hermitian
in Hη+ with the metric η+ defined as

η+ :=
N∏

i=1

e−2γic
†
i ci . (58)

The Hamiltonian can be mapped to a Hermitian Hamiltonian h in HD by using the similar
operator ρ := ∏N

i=1 e−γic
†
i ci and a unitary operator U := ∏N

i=1 e−iξic
†
i ci as

h := (Uρ)H(Uρ)−1 =
N∑

i,j=1

Aij c
†
i cj +

1

2

N∑
i,j=1

Bij

(
c
†
i c

†
j + cicj

)
. (59)

The Hamiltonian h is exactly solvable and the diagonalization procedure is described in detail
in [34]. For the nearest-neighbor interaction, H(h) can be mapped to a solvable non-Hermitian
(Hermitian) XY spin chain in HD by using the Jordan–Wigner transformation [34].

The fermionic annihilation operators Ci and their adjoint C
†
i in Hη+ may be defined in

terms of ci, c
†
i as

Ci := e−γi ci , C
†
i := eγi c

†
i , (60)

which satisfy the basic canonical anti-commutation relations (56). A general eigenstate of the
total fermion number operator in the Hilbert space HD , |f1, . . . , fi, . . . , fN 〉HD

, is related to
the corresponding state |f1, . . . , fi, . . . , fN 〉Hη+

in the Hilbert space Hη+ through the following
relation:

|f1, . . . , fi, . . . , fN 〉Hη+
=

N∏
k=1

eγkfk |f1, . . . , fi, . . . , fN 〉HD
, fi = 0, 1 ∀ i. (61)
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The 2N states |f1, . . . , fi, . . . , fN 〉Hη+
form a complete set of orthonormal states in Hη+ , while

|f1, . . . , fi, . . . , fN 〉HD
constitute a complete set of orthonormal states in HD . The action of

Ci(C
†
i ) on |f1, . . . , fi, . . . , fN 〉Hη+

is identical to that of ci (c
†
i ) on |f1, . . . , fi, . . . , fN 〉HD

. In
particular,

Ci |f1, . . . , fi, . . . , fN 〉Hη+
= 0, if fi = 0

= |f1, . . . , 0, . . . , fN 〉Hη+
, if fi = 1,

C
†
i |f1, . . . , fi, . . . , fN 〉Hη+

= 0, if fi = 1

= |f1, . . . , 1, . . . , fN 〉Hη+
, if fi = 0.

(62)

Suitable combinations of the operators Ci and C
†
i would give rise to a very large number of

pseudo-Hermitian quantum systems that go beyond the general quadratic form of fermionic
oscillators. Further, the definitions of Ci, C

†
i could be generalized easily to accommodate

a pseudo-Hermitian description of the Hubbard model, t–j model, etc. As in the case of
bosonic oscillators, the SU(2) generators can be realized in terms of pseudo-Hermitian fermion
operators.

4.3. XXZ spin chain

The study of non-Hermitian spin chains has a long history. It is a well-known fact that
non-Hermitian quantum spin chains correspond to two-dimensional classical systems with
positive Boltzmann weights. The non-Hermitian XY and XXZ spin-chain Hamiltonians with
Dzyaloshinsky–Moriya interaction commute with the transfer matrix of the six-vertex model in
the presence of an electric field [35] and the integrable chiral Potts model in the most general
case leads to a non-Hermitian quantum Hamiltonian [36, 37]. Non-Hermitian asymmetric
XXZ spin chains related to diffusion models have been studied extensively in non-equilibrium
statistical mechanics [38]. Further, a non-Hermitian quantum Ising spin chain in one dimension
[39] is known to be related to the popular Yang–Lee model [40] that aptly describes ordinary
second-order phase transitions. The non-hermiticity of the spin chain arises due to the inclusion
of an external complex magnetic field and an analysis based on minimal conformal field theory
is available [41]. Within the context of PT -symmetric theory, non-Hermitian spin chains have
been studied in [8, 9].

The pseudo-Hermitian spin operators Tx,y,z and the metric operator ζ+, as given in
equations (16) and (17), may be generalized appropriately to introduce a pseudo-Hermitian
XXZ spin-chain Hamiltonian. One such simple generalization is to consider the spin operators
T

x,y,z

i

T x
i := cosh wiSx

i + i sinh wiSy

i ,

T
y

i := −i sinh wiSx
i + cosh wiSy

i , (63)

T z
i := Sz

i ,

which are Hermitian in the Hilbert space Hζ+ with the positive-definite metric ζ+ defined as

ζ+ :=
N∏

i=1

e−2γiT
z
i . (64)

The operators Sx,y,z

i are Hermitian in the Hilbert space HD with the standard inner product.
An asymmetric XXZ spin chain in an external complex magnetic field may now be constructed
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that is manifestly non-Hermitian in HD

HA =
N−1∑
i=1

[
�

(
ewi−wi+1S+

i S−
i+1 + e−(wi−wi+1)S−

i S+
i+1

)
+ �Sz

i S
z
i+1

+ (Ai cosh wi − iBi sinh wi)Sx
i + (Bi cosh wi + iAi sinh wi)Sy

i + CiSz
i

]
, (65)

where S±
i := Sx

i ± iSy

i , {�,�,Ai, Bi, Ci} ∈ R and wi are as defined in equation (43). The
non-Hermitian interaction in HA may be interpreted as arising due to an imaginary vector
potential as in the case of the Bose system described before. In fact, with a hard-core boson
representation, HA can be mapped to a nearest-neighbor version of H in equation (43).

The Hamiltonian HA can be mapped to a Hermitian Hamiltonian in HD

h := U
(
ζ

1
2

+ HAζ
− 1

2
+

)
U−1

=
N−1∑
i=1

[
�

(
Sx

i Sx
i+1 + Sy

i S
y

i+1

)
+ �Sz

i S
z
i+1 + AiSx

i + BiSy

i + CiSz
i

]
, U :=

N∏
i=1

e−iχiSz
i ,

(66)

implying that both HA and h have entirely real spectra. The asymmetric XXZ spin-chain
Hamiltonian HA is Hermitian in Hη+ and this may be checked easily by rewriting HA as

HA =
N−1∑
i=1

[
�

(
T +

i T −
i+1 + T −

i T +
i+1

)
+ �T z

i T z
i+1 + AiT

x
i + BiT

y

i + CiT
z
i

]
, (67)

where T ±
i := T x

i ± iT y

i . Thus, the time evolution of HA is unitary in Hη+ .
A few comments are in order at this point.

(i) Several variants of the asymmetric XXZ Hamiltonian (65) have been studied in the
literature [38] in the context of two-species reaction–diffusion processes and Kardar–
Parisi–Zhang-type growth phenomenon. A typical choice for wk in these models is

γk = γ − (k − 1)φ, ξk = ξ ∀ k, {γ, ξ, φ} ∈ R, (68)

leading to a site-independent global phase factor e±φ in lieu of e±(wi−wi+1). The
transformation that maps a non-Hermitian asymmetric XXZ Hamiltonian to a Hermitian
Hamiltonian is also known in the literature [38]. This transformation is generally used
to show the reality of the entire spectra. However, with the standard inner product in the
Hilbert space HD , negative norm states exist. Consequently, in spite of having an entirely
real spectra, the time evolution of HA in HD is not unitary and dissipative processes can
thus be stimulated. The pseudo-hermiticity of HA has not been noted previously. The
time evolution of HA in Hη+ is unitary. Thus, with the discovery of the pseudo-hermiticity
of HA, it may be used to describe unitary time evolution in Hη+ . At a purely formal
level, it might seem to be a matter of choice to describe either unitary or non-unitary time
evolution by fixing an appropriate metric in the Hilbert space. However, an experimental
realization of any one of these systems may give a definite answer on whether nature
realizes pseudo-Hermitian quantum systems or not.

(ii) The symmetric XXZ spin-chain Hamiltonian in an external complex magnetic field may
be constructed by choosing wi ≡ w ≡ γ + iχ ∀ i, {γ, χ} ∈ R in equation (65):

HS =
N−1∑
i=1

[
�

(
Sx

i Sx
i+1 + Sy

i S
y

i+1

)
+ �Sz

i S
z
i+1 + (Ai cosh w − iBi sinh w)Sx

i

+ (Bi cosh w + iAi sinh w)Sy

i + CiSz
i

]
, (69)
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which is non-Hermitian in HD , but Hermitian in Hζ+ . The equivalent Hermitian

Hamiltonian h := U
(
ζ

1
2

+ HSζ
− 1

2
+

)
U−1 in HD to HS is still given by equation (66).

The Hamiltonian h has several integrable limits. Consequently, HA and HS are also
integrable in these limits with entirely real spectra and unitary time evolution. For
example, h reduces to a transverse-field Ising model for � = Bi = Ci = 0, Ai = A∀ i

and both h and HS have been studied in some detail [8] for this limiting case. For
� = 0, Ai = 0, Bi = 0 ∀ i, h reduces to an XX model in a transverse magnetic field
and is exactly solvable [34, 42]. Although HS is Hermitian in HD for this choice of the
parameters, HA is non-Hermitian. Thus, the non-Hermitian HA is exactly solvable and has
an equivalent description in terms of a Hermitian XX model in an external magnetic field.
For the following choice of the parameters,

� = 1, � = cosh q, C1 = −CN = − sinh q, Ai = Bi = 0 ∀ i;
Ci = 0, i = 2, 3, . . . , N − 1,

(70)

h − � reduces to an SUq(2) invariant [43] integrable [44] spin chain Hamiltonian. The
XXZ spin chain with Sl2 loop symmetry [45] may also be obtained as a limiting case.
The corresponding non-Hermitian Hamiltonian HA is also integrable and allows a unitary
description.

(iii) Only the spin chains with nearest-neighbor interactions are presented in this paper. A large
number of pseudo-Hermitian spin chains with no restriction on the type of interactions (i.e.
nearest-neighbor, next-nearest-neighbor etc) may be constructed by the use of operators
T

x,y,z

i . For example, a non-Hermitian version of the celebrated Haldane–Shastry spin
chain [23] may be constructed as follows:

H = ±
∑
i<j

	Ti · 	Tj

2 sin2 π
N

(i − j)
, (71)

where H is Hermitian in Hη+ and non-Hermitian in HD . The equivalent Hermitian
Hamiltonian in HD may be obtained as

h := (Uρ) H(Uρ)−1 = ±
∑
i<j

	Si · 	Sj

2 sin2 π
N

(i − j)
, (72)

implying that h and H are isospectral, where U is as defined in equation (66). It may
be noted that, in general, eigenstates of h and H are different. However, with proper
identification of physical observables in Hη+ through equation (4), different correlation
functions of the quantum systems governed by H and h are identical.

5. Conclusions and discussions

A class of pseudo-Hermitian quantum systems with a pre-determined metric in the Hilbert
space has been presented. These quantum systems admit entirely real spectra. Moreover,
the time evolution is unitary with the use of the modified inner product in the Hilbert
space. The general approach that has been used in the construction of these quantum
systems is the following. The basic canonical commutation relations defining these systems
have been realized in terms of operators that are non-Hermitian with respect to the Dirac-
hermiticity condition, but are Hermitian with respect to the modified inner product in the
Hilbert space involving the pre-determined metric. Consequently, appropriate combinations
of these operators result in a very large number of pseudo-Hermitian quantum systems. The
examples considered in this paper include higher-dimensional simple harmonic oscillators
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with complex angular frequencies, Stark effect with complex electric field, Zeeman effect
with non-Hermitian interaction, non-Hermitian general quadratic form of N boson (fermion)
operators, XXZ spin chains with complex magnetic field, a non-Hermitian version of the
Haldane–Shastry spin chain and Lipkin–Meshkov–Glick model.

The results presented in this paper are purely mathematical. An experimental realization or
verification of the predictions emanating from the study of pseudo-Hermitian/PT -symmetric
quantum mechanics is desirable. Although a concrete proposal on how non-Hermitian
interaction of the form described in this paper could be realized experimentally is lacking,
it is worth mentioning possible signatures in support/violation of PT -symmetric/pseudo-
Hermitian quantum physics, even within hypothetical setups. In this regard, the examples
considered in section 3 and time evolution of the asymmetric XXZ Hamiltonian may be
promising scenarios. For example, if the non-Hermitian interaction of the form described in
section 3 can be produced in the laboratory with γ being one of the externally controllable
parameters, the transition rate between two allowed levels may be studied for γ = 0 and
γ �= 0. It may be recalled here that in the Hilbert space HD , γ = 0 and γ �= 0 correspond to
Hermitian and non-Hermitian Hamiltonians, respectively. According to the prediction of this
paper, the transition rate between any two allowed levels would be independent of γ , if nature
realizes pseudo-Hermitian/PT -symmetric quantum systems.

In a similar way, the time evolution of HA in HD is expected to be non-unitary, while it
is unitary in Hη+ . At a purely formal level, it might seem to be a matter of choice to describe
either unitary or non-unitary time evolution by fixing an appropriate metric in the Hilbert space.
However, an experimental realization of any one of these systems related to reaction–diffusion
processes and the Kardar–Parisi–Zhang-type growth phenomenon may give a definite answer
on whether nature realizes pseudo-Hermitian quantum systems or not and whether or not a
more general positive-definite metric in the Hilbert space than the one prescribed by Dirac is
allowed. Any experimental result indicating the independence of different types of correlation
functions on γ [8] would garner support in favor of pseudo-Hermitian/PT -symmetric quantum
mechanics.
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